姓名:应祖建

应祖建,研究员, 博士生导师。 2024年入选全球前2%顶尖科学家榜单。

1999年兰州大学理论物理专业博士学位(导师王顺金教授), 

1999-2001年浙江大学博士后 (合作导师李有泉教授)、评为副研究员, 

2002-2004年在巴西UFRGS大学和巴西物理研究中心(CBPF)做访问学者,

2005-2018年先后在意大利萨莱诺大学、意大利罗马第一大学(Sapienza)、意大利国家研究院

超导与创新材料器件研究所CNR-SPIN等单位做博士后、高级研究员、高级访问学者,

2019年加入兰州大学。

主要致力于纳米系统与自旋电子学、光与物质作用、强关联系统与凝聚态理论等领域的研究。

研究量子系统与凝聚态理论,具体方向包括纳米系统与自旋电子学、几何驱动与拓扑相变、光和物质相互作用、少体和多体系统的量子相变、量子计量学、非厄米物理、强关联系统与密度泛函理论发展、冷原子、纳米金属颗粒、低维系统与可积模型、高温超导理论与现象学、全息理论、关联动力学与代数动力学等 。

已合作指导博士生2名、博士后1名, 独立指导毕业博士生1名、硕士生1名, 在读博士生3名、硕士生3名

最近完成工作:

 

[21] P. Gentile, M. Cuoco, O. M. Volkov, Z.-J. Ying, I. J. Vera-Marun, D. Makarov, and C. Ortix, 

Electronic materials with nanoscale curved geometries, 

Nature Electronics 5, 551 (2022).

 

[20] Z.-J. Ying, 

Back Cover: Universal quantum Fisher information and simultaneous occurrence of Landau-class and topological-class transitions in non-Hermitian Jaynes-Cummings models (Adv. Quantum Technol. 10/2024), 

Adv. Quantum Technol. 7, 2470029 (2024).  期刊背封面文章

 

[19] Z.-J. Ying, 

Front Cover: Robust Topological Feature against Non-Hermiticity in Jaynes–Cummings Model (Adv. Quantum Technol. 7/2024), 

Adv. Quantum Technol. 7, 2470017 (2024). 期刊封面文章

 

[18] Z.-J. Ying, 

Front Cover: Nodes and Spin Windings for Topological Transitions in Light–Matter Interactions (Adv. Quantum Technol. 7/2023), 

Adv. Quantum Technol. 6, 2370071 (2023). 期刊封面文章

 

[17] Z.-J. Ying, 

Front Cover: Scaling Relations and Topological Quadruple Points in Light-Matter Interactions with Anisotropy and Nonlinear Stark Coupling (Adv. Quantum Technol. 1/2023), 

Adv. Quantum Technol. 6, 2370011 (2023). 期刊封面文章

 

[16] Z.-J. Ying, 

Back Cover: From Quantum Rabi Model To Jaynes–Cummings Model: Symmetry-Breaking Quantum Phase Transitions, Symmetry-Protected Topological Transitions and Multicriticality (Adv. Quantum Technol. 1/2022), 

Adv. Quantum Technol. 5, 2270013 (2022). 期刊背封面文章

 

[15] Z.-J. Ying*, S. Felicetti*, G. Liu, D. Braak*, 

Critical Quantum Metrology in the Non-Linear Quantum Rabi Model, 

Entropy 24, 1015 (2022). 被选为亮点文章 (Editor’s Choice)

 

[14] Z.-J. Ying, 

Universal quantum Fisher information and simultaneous occurrence of Landau-class and topological-class transitions in non-Hermitian Jaynes-Cummings models, 

Adv. Quantum Technol. 7, 2400288 (2024)

 

[13] Z.-J. Ying, 

Robust topological feature against non-Hermiticity in Jaynes-Cummings Model, 

Adv. Quantum Technol. 7, 2400053 (2024).

 

[12] Z.-J. Ying, 

Spin Winding and Topological Nature of Transitions in Jaynes-Cummings Model with Stark Non-linear Coupling, 

Phys. Rev. A 109, 053705 (2024).

 

[11] Z.-J. Ying*, Wen-Long Wang, and Bo-Jian Li, 

Quantum Fisher information and polaron picture for identification of transition coupling in quantum Rabi model,

arXiv:2403.10657 (2024). Phys. Rev. A (2024) 已接受

 

[10] Z.-J. Ying, 

Nodes and Spin Windings for Topological Transitions in Light-Matter Interactions: Anisotropic Quantum Rabi Model as a Born Abstract Artist, 

arXiv:2211.11072 (2022). Adv. Quantum Technol. 6(7), 2200177 (2023).

 

[9] Z.-J. Ying, 

Scaling Relations and Topological Quadruple Points in Light-matter Interactions with Anisotropy and Nonlinear Stark Coupling, 

Adv. Quantum Technol. 6(1), 2200068 (2023).

 

[8] Z.-J. Ying, 

From Quantum Rabi Model To Jaynes–Cummings Model: Symmetry-Breaking Quantum Phase Transitions, Symmetry-Protected Topological Transitions and Multicriticality, 

Adv. Quantum Technol. 5(1), 2100088 (2022).

 

[7] Z.-J. Ying, 

Hidden Single-Qubit Topological Phase Transition without Gap Closing in Anisotropic Light-Matter Interactions, 

Adv. Quantum Technol. 5(6), 2100165 (2022).

 

[6] Gang Liu, Wei Xiong*, Zu-Jian Ying*, 

Switchable Superradiant Phase Transition with Kerr Magnons,

Phys. Rev. A 108, 033704 (2023).

 

[5] Z.-J. Ying, 

Symmetry-breaking patterns, tricriticalities, and quadruple points in the quantum Rabi model with bias and nonlinear interaction,

Phys. Rev. A 103, 063701 (2021).

 

[4] J. Liu, M. Liu*, Z.-J. Ying*, H.-G. Luo*, 

Fundamental Models in the Light–Matter Interaction: Quantum Phase Transitions and the Polaron Picture, 

Adv. Quantum Technol. 4, 2000139 (2021).

 

[3] Z.-J. Ying, P. Gentile, J. P. Baltanás, D. Frustaglia, C. Ortix, and M. Cuoco, 

Geometric driving of two-level quantum systems, 

Phys. Rev. Research 2, 023167 (2020).

 

[2] Z.-J. Ying, L. Cong, and X.-M. Sun,

Quantum phase transition and spontaneous symmetry breaking in a nonlinear quantum Rabi model, 

J. Phys. A: Math. Theor. 53, 345301 (2020).

 

[1] X.-M. Sun, L, Cong, H.-P. Eckle, Z.-J. Ying, and H.-G. Luo, 

Application of the polaron picture in the two-qubit quantum Rabi model, 

Phys. Rev. A 101, 063832 (2020).

 

 

中文博文:

 

[1]《多样性和普适性的相克相生:Rabi模型和JC模型过渡中的量子相变、拓扑相变和多相点》

ASNChina AdvancedScienceNews, https://mp.weixin.qq.com/s/A5se1AMlvT-nAZgEoyJD-g

 

[2]《光与物质作用单体相变的迷你世界:隐藏的无能隙关闭拓扑相变》

ASNChina AdvancedScienceNews, https://mp.weixin.qq.com/s/0CzoVuO8sGokQj9NiU0kyw 

 

 

近年部分工作:

 

[1] Z.-J. Ying, M. Cuoco, C. Ortix, and P. Gentile, 

Tuning pairing amplitude and spin-triplet texture by curving superconducting nanostructures, 

Phys. Rev. B (Rapid Communication) 96, 100506(R) (2017).

 

[2] Z.-J. Ying, P. Gentile, C. Ortix, and M. Cuoco, 

Designing electron spin textures and spin interferometers by shape deformations, 

Phys. Rev. B (Rapid Communication) 94, 081406(R) (2016).

 

[3] M. Liu, S. Chesi, Z.-J. Ying, X.S. Chen, H.-G. Luo, and H.-Q. Lin, 

Universal scaling and critical exponents of the anisotropic quantum Rabi model, 

Phys. Rev. Lett. (Editors' Suggestion) 119,220601 (2017).

 

[4] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Exact Solution for a Trapped Fermi Gas with Population Imbalance and BCS Pairing, 

Phys. Rev. Lett. 100, 140406 (2008).

 

[5] Z.-J. Ying, V. Brosco, G. M. Lopez, D. Varsano, P. Gori-Giorgi, and J. Lorenzana, 

Anomalous scaling and breakdown of conventional density functional theory methods for the description of Mott phenomena and stretched bonds, 

Phys. Rev. B 94, 075154 (2016).

 

[6] Z.-J. Ying*, V. Brosco, J. Lorenzana, 

Solving lattice density functionals close to Mott regime, 

Phys. Rev .B 89, 205130 (2014).

 

[7] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Coexistence of strong pairing correlations and itinerant ferromagnetism arising from spin asymmetric bandwidths: A reduced BCS model study, 

Phys. Rev. B 78, 104523 (2008).

 

[8] Z.-J. Ying*, M. Liu, H.-G. Luo*, H.-Q. Lin*, and J. Q. You, 

Ground-state phase diagram of the quantum Rabi model, 

Phys. Rev. A 92, 053823 (2015).

 

[9] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Coexistence of spin polarization and pairing correlations in the metallic grains, 

Phys. Rev. B 74, 012503 (2006).

 

[10] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Field response of metallic grain with magnetic and pairing correlations, 

Phys. Rev. B 74, 214506 (2006).

 

[11] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Competition between magnetic and superconducting pairing exchange interactions in confined systems, 

Phys. Rev. B 76, 132509 (2007).

 

[12] M. Cuoco, P. Gentile, C. Noce, A. Romano, Z.-J. Ying, and H.-Q. Zhou, 

Is the nature of itinerant ferromagnetism playing a role in the competition between spin polarization and singlet pair correlations? 

J. Phys.: Condens. Matter 21, 254203 (2009).

 

[13] Z.-J. Ying, M. Cuoco, C. Noce, and H.-Q. Zhou, 

Phase diagram and deformed phase separation for a trapped Fermi gas with population imbalance and BCS pairing interaction, 

Eur. Phys. J. B 78, 43 (2010).

 

[14] H.-Q. Zhou, Z.-J. Ying, M. Cuoco, C. Noce, 

Universal scaling and pairing symmetry for high-temperature cuprate superconductors, 

arXiv:1002.4281

 

[15] J. Lorenzana, Z.-J. Ying, V. Brosco, 

Density-functional theory with adaptive pair density: The Gutzwiller approximation as a density functional, 

Phys. Rev. B 86, 075131 (2012).

 

[16] V. Brosco, Z.-J. Ying, J. Lorenzana, (作者同等贡献) 

Exact exchange-correlation potential of an Ionic Hubbard model with a free surface, 

Sci. Rep. 3, 2172 (2013).

 

[17] M. Liu, Z.-J. Ying, J.-H. An, and H.-G. Luo, 

Mean photon number dependent variational method to the Rabi model, 

New J. Phys. 17, 043001 (2015).

 

[18] M. Liu, Z.-J. Ying, J.-H. An, H.-G. Luo, and H.-Q. Lin, 

The asymmetric quantum Rabi model in the polaron picture, 

J. Phys. A: Math. Theor. 50(8), 084003 (2017).

 

[19] V. Brosco, Z.-J. Ying, and J. Lorenzana, 

Strong parameter renormalization from optimum lattice model orbitals, 

Phys. Rev. B 95, 035121 (2017).

 

[20] L. Cong, X.-M. Sun, G.-Y. Li, M. Liu, Z.-J. Ying*, and H.-G. Luo*, 

Frequency-renormalized Multipolaron Expansion for the Quantum Rabi Model, 

Phys. Rev. A 95, 063803 (2017).

 

[21] Z.-J. Ying, M. Cuoco, P. Gentile, C. Ortix, 

Josephson Current in Rashba-based Superconducting Nanowires with Geometric Misalignment, 

IEEE xplore, DOI: 10.1109/ISEC.2017.8314198 (2018).

 

[22] L. Cong, X.-M. Sun, M. Liu, Z.-J. Ying*, and H.-G. Luo*, 

Polarons induced by tunneling in the two-photon quantum Rabi model, 

Phys. Rev. A 99, 013815 (2019).

 

 

其它工作见 https://orcid.org/0000-0003-1635-7605

项目基金: 

1. 国家自然科学基金面上项目:超强光与物质作用中的新奇量子物相探索与应用,已批准资助,主持。 

2. 国家自然科学基金面上项目:Rashba自旋轨道耦合纳米系统相变的几何控制研究,结题续用,主持。 

3. “双一流”引导专项-队伍建设经费1项,在研,主持。 

 

已完成项目: 

1. 意大利国家研究委员会(CNR)高级研究资助课题项目, 

Modellizzazione di superconduttori con pairing non convenzionale, nanostrutture magnetiche e superconduttive, fasi topologiche (2014-2018),已结题,主持。 

2. 欧洲项目未来与新兴技术计划 (FET),

Curved Nanomembranes for Topological Quantum Computation (2014-2017),已结题,参加。 

3. 意大利国家研究委员会(CNR)高级研究资助课题项目, 

Sviluppo di funzionale della densita’ e della densita’ di coppie nel continuo (2012-2013), 已结题,主持。 

4.意大利科技院(IIT)项目, 

New functionals for the electronic structure of complex materials (2010-2013),已结题,参加。 

5. 罗马一大奖学研究资助课题项目,

Teoria del Funzionale densitita basata sull’approssimazione di Gutzwiller e sul Ansatz di Bethe (2010-2012), 已结题,主持。 

6.意大利Regione Campania省区+CNR-INFM-Laboratoria-SUPERMAT混合项目,

Superconducting states in itinerant ferromagnets: mechanisms and topology of mixed phases (2005-2009), 已结题,参加。 

7. 巴西州立研究基金课题项目(FAPEGS与FAPERJ),

Non-perturbative study of strongly correlated systems, spin ladders and BCS models (2002-2004),已结题,主持。 

8. 教育部跨世纪人才基金,自旋及强关联系统 (2000-2003),已结题,参加。

科研崎岖路上,凭一点兴趣和热情,做一点点平凡的小工作,便为乐趣,小词一首自勉:

 

《临江仙 • 题格致楼》

 

宇宙宏微无量尽, 

人星邈汉埃尘。

此间奥妙已缤纷。

沙中藏世界, 

贝上画黚崑。

 

路漫漫兮修远矣, 

何将上下索寻? 

致知格物好奇心。

偶识一叶美, 

更励我求真。 

 

----- 

2019.3.23于兰大 

 

 

《五律·画科研·Adv. Quantum Technol. 封面封底文章》

 

技林难画虎,[1] 

科海可成虫。[2] 

底绣斑皮甲, 

封描草履踪。[3] 

量须非引露, 

子魄却从桐。[4]

 进化弦蝉翅,[5] 

先拨松曲风。[6] 

 

----- 2022.1.7于兰大 

[1] 做了点小工作,有幸被选为2022年第一期封面封底https://onlinelibrary.wiley.com/doi/10.1002/qute.202270013, 

22年虎年,相图条纹有点象虎纹, 管中窥虎,可见一栅。 

[2] 画虎不成反类虫。

[3] 草履虫。 

[4] 《蝉》(唐)虞世南:垂緌饮清露,流响出疏桐。 

[5] 后来发现相图全貌长了翅膀象蝉蝶。https://doi.org/10.1002/qute.202100165 

[6] 《弹琴》(唐)刘长卿:泠泠七弦上,静听松风寒。 

 

 

《临江仙·大话西游·临界普适性和拓扑普适性在光与物质作用中的鱼和熊掌兼得》 

 

青紫仙霞谪入世,

俩分昼夜同身。[1] 

冤家终解战魔犇。 

洞天开演义, 

佛祖卷灯芯。[2] 

 

临界拓扑原互克, 

如今单比双存。[3] 

蛹蝶化羽相出尘。[4] 

人生足砥砺, 

物理道磨真。 

 

----- 

2023.1.30于兰大

[1]电影《大话西游》中的青霞仙子和紫霞仙子,两个共用一个躯体,白天是紫霞,晚上是青霞。 

[2]青霞与紫霞前世由于斗得太厉害了,所以佛祖就把她们两个卷在一起变成一根灯芯,要她们苦练修行化解这段恩怨。在水帘洞(被紫霞改为盘丝洞)与孙悟空转世的至尊宝相遇演义了一段刻骨铭心的恩怨情仇故事,最后两人在大战牛魔王时双双殒命,但最后在互救中和好,生命终得以升华和回归。 

[3]单比,单比特系统。 

[4]蛹状、蝶状、鸽状相图的演化。

蛹状相图 (https://onlinelibrary.wiley.com/doi/10.1002/qute.202270013) 

蝶状相图 (https://doi.org/10.1002/qute.202100165) 

鸽状相图 (https://onlinelibrary.wiley.com/doi/10.1002/qute.202370011) 

 

 

《临江仙 • 宏微有道 • 量子拉比模型乃拓扑抽象画家》

 

光物耦合藏画手, 

绕旋频现图腾: [1] 

企鹅飞燕栩人生。[2] 

模中吴道子, 

物理有丹青。 

 

山海划洲如五藏,[3] 

宇神盘古鸿濛。 

邛崃麒士刻峦崝。[4] 

而今惊量子,

 微处亦精灵。 

 

----- 

2023.7.19于兰大 

[1] https://onlinelibrary.wiley.com/doi/10.1002/qute.202370071 

[2] 自旋图例,分别象大厨(a)、相扑士(b)、双马尾辫女孩(c)、波波发披披肩女士(d)、企鹅(e)、飞燕(f), 见 Fig.11, Z.-J. Ying, Adv. Quantum Technol. 6, 2200177 (2023)。

[3]《山海经》。 

[4] 邛崃山脉余脉蒙顶山,曾有报道卫星图像显示山脉形状似乎刻出一只麒麟和一个戴羽毛头冠的武士。 

 

 

《五律 • 对非厄米鲁棒的光物耦合拓扑性质》

 

难去人生业,[1] 

还从物理学。

虽环非厄扰,

坚秉自旋阶。[2] 

玉碎无失色, 

竹焚不改节。[3] 

物能经砥砺, 

吾怎叹磕跌? 

 

----- 

2024.7.21于兰大

[1]去,祛除。 

[2]虽受外界非尔米作用干扰,自旋拓扑性质不变。

[3]三国关公语。

https://doi.org/10.1002/qute.202470017 https://doi.org/10.1002/qute.202400053