姓名:谭磊

谭磊,男、山东泰安人,教授,博士生导师。 2003年博士毕业,2004-2007年数学博士后, 2011年Institute of Physics CAS访问学者,2011-2012 University College London访问学者。 主要从事量子光学、冷原子物理和统计物理等方面的研究工作。主持和参与国家自然科学基金6项, 博士点基金1项,甘肃省自然科学基金1项。发表SCI论文90余篇。获兰州大学隆基教育教学骨干奖、萃英学院优秀教师奖、教育部拔尖计划优秀导师奖。 国家级精品课程《量子力学》、国家一流本科课程《热学基础II》、省级精品课程《热力学统计物理》的主要参与人。担任全国热力学与统计物理教学研究会副理事长。
主要从事量子相变、量子输运、量子纠缠、量子热力学、拓扑相变等方面的研究。
主讲《热学》、《热力学统计物理》、《高等统计物理》等课程。 已指导毕业博士研究生9人,硕士研究生近40人,其中曹倩获甘肃省优秀硕士学位论文。
课题组近五年发表的主要论文: [23] Jin-Lou Ma, Bobo Liu, Qing Li, Zexian Guo, Lei Tan, and Lei Ying. Many-body phases in Jaynes-Cummings-Hubbard arrays, Phys. Rev. A , 2024, 109(3): 033707. [22] Zhi-Qiang Liu, Lei Liu, Zhuang-Zhuang Meng, Lei Tan, Wu-Ming Liu. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity, Optics Express, 2024, 32(1):722. [21] Gang-Feng Guo, Xi-Xi Bao, Han-Jie Zhu, Xiao-Ming Zhao, Lin Zhuang, Lei Tan and Wu-Ming Liu. Anomalous non-Hermitian skin effect: topological inequivalence of skin modes versus point gap, Communications Physics, 2023, 6: 363. [20] Zhi-Qiang Liu, Yun Liu, Lei Tan, and Wu Ming Liu. Reservoir Engineering Strong Magnomechanical Entanglement via Dual-Mode Cooling, Ann. Phys. (Berlin) 2023, 535: 2200660. [19] Xu Yang, Lei Tan, and Wu-Ming Liu. Directional router and controllable non-reciprocity transmission based on phase and pathway coherence, Physica Scripta, 2023, 98: 125116. [18] Xi-Xi Bao, Gang-Feng Guo, Xu-Yang and Lei Tan. High-fidelity topological quantum state transfers in the cavity-magnon system, Chin. Phys. B, 2023, 32(8): 080301. [17] Xi-Xi Bao, Gang-Feng Guo and Lei Tan. Engineering topological state transfer in four-period Su–Schrieffer–Heeger chain, Chin. Phys. B, 2023, 32(2): 020301. [16] Qing Li, Jin-Lou Ma, Lei Tan. Normal and abnormal thermalization indicators in a one-dimensional low-density Jaynes-Cummings Hubbard model with and without dipole-dipole interaction, Physical Review E, 2022, 106(6):064107. [15] Jin-Lou Ma, Qing Li, Lei Tan. Ergodic and nonergodic phases in a one-dimensional clean Jaynes-Cummings-Hubbard system with detuning, Physical Review B, 2022, 105(16):165432. [14] Qian Cao, Lei Tan, Wu-Ming Liu. Superfluid–Mott-insulator quantum phase transition in a cavity optomagnonic system, Physical Review A, 2022, 105(4):043705. [13] Gang-Feng Guo, Yan Wang, Xi-Xi Bao, Lei Tan. Floquet topological properties in the non-Hermitian long-range system with complex hopping amplitudes, Journal of Physics: Condensed Matter, 2022, 34(43):435401. [12] Qing Li, Jin-Lou Ma, Lei Tan. Eigenstate thermalization and quantum chaos in the Jaynes–Cummings Hubbard model, Physica Scripta, 2021, 96(12):125709. [11] Gang-Feng Guo, Xi-Xi Bao, Lei Tan. Non-Hermitian bulk-boundary correspondence and singular behaviors of generalized Brillouin zone, New Journal of Physics, 2021, 23(12):123007. [10] Xi-Xi Bao, Gang-Feng Guo, Lei Tan. Exploration of the topological properties in a non-Hermitian long-range system, Journal of Physics: Condensed Matter, 2021, 33(46):465403. [9] Xi-Xi Bao, Gang-Feng Guo, Xue-Peng Du, Huai-Qiang Gu, Lei Tan. The topological criticality in disordered non-Hermitian system, Journal of Physics: Condensed Matter, 2021, 33(18):185401. [8] Tong Huang, Lei Tan. Photon antibunching in a cavity-QED system with two Rydberg–Rydberg interaction atoms, The European Physical Journal D, 2021, 75(12):312.【被选为封面文章】 [7] Jin-Lou Ma, Qing Li, Lei Tan. Steady-state quantum phase transition in a Jaynes–Cummings–Hubbard model with quantized center-of-mass motions, The European Physical Journal D, 2021, 75(10):262. [6] Xue-Peng Du, Qian Cao, Ning Dang, Lei Tan. Quantum router modulated by two Rydberg atoms in a X-shaped coupled cavity array, The European Physical Journal D, 2021, 75(3):79. [5] Qing Li, Jin-Lou Ma, Tong Huang, Lei Tan, Huai-Qiang Gu, Wu-Ming Liu. Quantum quench dynamics of the Jaynes-Cummings-Hubbard model with weak nearest-neighbor hopping, EPL (Europhysics Letters), 2021, 134(2):20007. [4] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, Huaiqiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System, Chinese Physics Letters, 2021, 38(4):040302. [3] Jin-Lou Ma; Lei Tan; Qing Li; Huai-Qiang Gu; Wu-Ming Liu. Superfluid–Mott insulator quantum phase transition in hybrid cavity optomechanical arrays, Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(19):195402. [2] Yun-Xia Shi, Lei Tan, Jun-Jie Liang, Qing Li, Jin-Lou Ma. Modulating the single-photon transport periodically with two emitters in two one-dimensional coupled cavity arrays, Optics Communications, 2019, 431:73-80. [1] Xi-Xi Bao, Gang-Feng Guo, Lei Tan. Quantum router modulated by the dipole-dipole interaction in a X-shaped coupled cavity array, The European Physical Journal D , 2019, 73(7):133.
代表性成果 1) 原子间长程相互作用可导致EJCH体系产生新奇量子相。对于确定温度下的一维情况,大尺寸体系可出现稳定的莫特绝缘相和超流相,而强的偶极-偶极相互作用可导致小尺寸的体系出现不稳定的密度波相。对于确定温度下的二维正方晶格体系,弱偶极-偶极相互作用可导致系统出现棋盘相和超流相;但在强偶极-偶极相互作用下,体系还可存在涨落和尺寸依赖性小的稳定超固相; 2) 显著的光力学耦合强度使得有效的格点排斥相互作用发生改变,导致高激发数的莫特绝缘相消失;腔光子-磁子的耦合强度的增加以及二者失谐为正可使 Mott 叶的稳定区域受到压缩,有利于体系相干;质心运动的 JCH 模型可出现莫特绝缘相,非相干振动,超流相和相干振动相四种量子相; 3) 长程相互作用会使体系发生拓扑相变,产生一个缠绕数为2的拓扑相;在拓扑态的转移过程中,长程相互作用会使末态等概率的占据在多个格点,形成拓扑路由器; 4) 偶偶极相互作用会导致弱隧穿极限下低密度 EJCH 模型中的中间态更接近可积点;费米近似后的 JCH 模型是近可积的并且不能热化;当光子的隧穿强度与光子-原子的耦合强度在同一量级时,JCH 系统在共振情况下出现量子混沌现象并且满足本征态热化假设; 5) 调控里德堡相互作用可实现三种不同频率光子实现量子路由;耗散会降低转移谱的峰值和全透射谱的峰值,对全反射谱的峰产生非对称影响; 6) 里德堡相互作用会使系统出现由能级非线性导致的常规光子阻塞效应和由不同路径之间的量子干涉导致的非常规光子阻塞效应; 7)基于一维非厄米模型来研究了广义布里渊区具有奇异特征情况下体边缘对应的物理性质。